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Abstract
Using different indices of climate related risk for damage at the housing

unit and building unit level together with housing market transaction data, we
investigate the relationship between these risks and house prices. This study
analyzes sales from five different Norwegian cities from a dataset of almost
200,000 transactions from 2019 to 2024. In addition, three different indices
are used to assess the risk of natural damage at the building level and the
housing unit level, using both hazard zones and machine learning techniques.
The risks analyzed in this study are mainly related to pluvial floods, landslides
and avalanches, which are the dominant types of damage in Norway in terms
of magnitude and dispersion. We also include the risk of damage related to
floods, storms and storm surges in the analysis.

The findings of the study indicate that homebuyers take climate risk into
account in their valuation processes. By using hedonic regression models and
dynamic event analyses, we find that the risk of damage caused by climate-
related natural disasters and water damages negatively affects house prices.
The effect also appears to be greater after certain serious incidents related to
some types of injuries, indicating behavioral effects. The negative risk premium
is significant and robust across different model specifications and for different
market segments, and also when we take into account various control variables
and time- and area-fixed effects.
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1 Introduction
Worldwide we see that the number of natural disasters increase due to global warm-
ing. Furthermore we expect higher frequency and intensity of extreme weather
events. The «big five» hazards (floods, earthquakes, storms, drought and extreme
heat) accounted in 2023 for direct economic costs of about 195.7 billion USD, or ap-
proximately 0.15% of global GDP. However, this number is without counting what
is lost during and after a disaster, in livelihoods disrupted, degraded ecosystems or
lives derailed by displacement or long-term health impacts. (United Nations Office
for Disaster Risk Reduction, 2023)

Norweigan insurance claims data, available from Finance Norway, reveals that
avalanches has been the most severe type of damage the past years, and that pluvial
floods has been the most frequent type of weather related damage. Hence, these two
types of damages are relevant to analyze separately in order to get a better view on
how the housing market reacts to the risk of these types of damages. See Table ?? for
details. Norway is also relevant to analyze in an international context because it is
one of the countries with the highest homeownership share in Europe, and insurance
premiums related to natural disasters are low and flat, and not adjusted for the risk
for damages.

Flooding is the most frequent and costliest global natural hazards. Despite efforts
to manage floods, the economic losses from flood events keep escalating (Anshuka
et al., 2025; Smith, 2020). Urban flooding occurs predominantly during intense rain-
fall events in densely populated areas with inadequate drainage and sewer systems
(Prokić et al., 2019; Palla et al., 2018). This phenomenon, also called pluvial flooding,
differs from fluvial flooding, which is mainly caused by overflowing rivers. Despite
the fact that pluvial floods often cause less damage per event than fluvial ones, their
higher frequency can result in substantial cumulative losses (Tanaka et al., 2020;
Moftakhari et al., 2017).
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Pluvial flooding is one of the natural hazards which we look closer at in this
study in addition to landslides and avalanches. There are particularly two reasons
why these natural hazards are highlighted here. One is that they are the dominant
damage types in Norway where the case areas are located, as mentioned above.
Additionally, this is a type of natural hazard where local topography and land use
have a large impact. This means that it is possible to calculate the risk for these
hazards based on digital terrain data with high accuracy.

The impacts of climate change threaten the stability of the housing market world-
wide. In response to growing concerns, there is a realization that increasing costs
of for example flooding are not fully captured in property values (Valderrama et al.,
2023; Urban Land Institute, 2020; Gourevitch et al., 2023). Hence, it constitutes a
substantial financial risk for capital tied up in the housing market. This risk is mostly
present for individuals and households, but it may also in the aggregate influence
regional housing markets. Risk may thereby in turn affect financial stability and the
real economy through e.g. the financial accelerators (Bernanke et al., 1999). In the
US, 90 percent of natural disasters involve flooding, and the number is increasing due
to both weather and demographic trends. More people are moving to flood-prone
areas, and many of them do not know that their homeowners insurance does not
cover flood damage (Dunsavage, 2022).

The literature on housing markets provides lots of evidence that flood risk impacts
property prices. However, studies on the the direction and magnitude of this impact
has yielded varied results (Belanger and Bourdeau-Brien, 2018). Skouralis et al.
(2024) found that properties at risk for various climate effects in the UK are sold at
an 8.14 percent discount compared to non-exposed properties, and the price discount
increases to 32.2 percent for properties with very high flood risk. Furthermore,
their empirical model suggested that a percentage point increase in the flood risk
of properties is associated with a decrease of 0.07 to 0.11 percent in both sold and
asking property prices. They also found that the impact was higher for properties of
which flood risk was expected to increase or for regions that recently experienced a
flood event.

Homebuyers who have access to flood risk information when searching for home
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listings online are then more likely to view and make offers on homes with lower flood
risk than those who do not have access. As more people become aware of climate
risk, homes in endangered areas will most likely receive fewer offers, causing home
values to fall. At the same time, it is expected that prices in lower-risk, inland areas
rise as more Americans move there to avoid flooding (Gourevitch et al., 2023).

According to Urban Land Institute (2020) the real estate industry’s prioritiza-
tion of climate risk has increased significantly in recent years, and is expected to
accelerate further, focusing on market-level climate risk and resilience. Furthermore,
the industry needs to be able to better measure the value impact, so it can base its
future decision-making on a quantitative rather than qualitative understanding of
the risks.

Natural disasters can lead to lower housing prices, but the effect may not be
constant over time (Gallagher, 2014; Atreya and Ferreira, 2015). Other studies which
explore how new environmental risk information affects housing prices, have found
that the effect is large to begin with, but becomes less important over time. (Currie
et al., 2015). Hence, it is relevant also to analyze these salience effects in how the
price development is influenced by major floods and other events of natural hazards
over time.

Our research question is then to investigate whether house prices in Norwegian
cities are affected by climate risk. We combine risk indices for natural hazards at the
building level with housing price development using housing transaction data. Sales
from five Norwegian cities located all around the country with different risk profiles
due to differing topography are analyzed, and the data set consists of in nearly 200
000 transactions from 2019-2024. We analyze two types of indices describing risk for
pluvial floods, landslides and avalanches, and also an index which is a joint measure
for many types of damages. Norway’s varied geography, with steep mountains and
flat areas, means that different cities and areas are threatened by different natural
hazards. Therefore, it is particularly interesting to distinguish between several types
of risk indexes and to look at different areas.

Initially, in the theoretical section, we generalize approaches in developing risk
index models and describe the three indices more detailed. Furthermore, the hedonic
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house price function as the theoretical backdrop used for this study is presented. The
next section describes an overview of the data sources which are applied, followed by
the methodological framework used for the analysis. Finally in this study, the data
is analyzed by estimating a hedonic model for the three types of indexes.

The price effect associated with climate risk in Norwegian cities may transferable
to countries world wide, especially in the light of how the insurance system is in
Norway compared to other countries (Monasterolo et al., 2025). The outcome of this
study should be of interest for multiple stakeholders, mainly house owners, banks,
insurance companies as well as neighborhoods at risk for natural hazards. Quanti-
fying the effect will bring new information and can hopefully raise the attention to
climate adaption and preventive measures

2 Assessing risk of natural hazards at building
level

In this section three indices, all assessing risk for natural hazards, are described. We
label these as 1) Physical Risk Score (PRS), 2) Pluvial Flood Index for buildings
(PFIb), and 3) Avalanche Indicator for buildings (AIb).

While the pluvial flood index and avalanche indication are specifically constructed
around the characteristics and location of each building, the physical risk score is
derived by intersecting the building’s location with broader caution zones and ex-
tracting the corresponding score from the underlying model. Later in this article
they are all used for the analysis related to house price developments.

The PRS relies on general hazard zones created from aggregated terrain, hy-
drological, and climate datasets, which gives a broad risk estimate for each home,
incorporating many types of potential damages. The PFIb and AIb are developed
from machine learning techniques at the building level, and focus only on one general
type of damage.
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2.1 Physical Risk Score (PRS)

The Norwegian real-estate data provider Eiendomsverdi AS has conducted an exten-
sive analysis to quantify and estimate to what extent homes are exposed to physical
climate risks. Their analysis incorporates risk for most types of damages such as
floods, quick clay landslides, small and large avalanches, coastal surges, tides, and
pluvial floods. They use both publicly available data and private data to assess how
prone a home is to various damages in the area it lies.

Beyond quantifying exposure, Eiendomsverdi’s methodology involves providing a
risk score for each housing unit. Each dwelling is evaluated against various hazard
indicators, and a score is assigned for each type of hazard. This yields the Phys-
ical Risk Score (PRS), which ranges from 0 (no hazard exposure) to 6 (maximum
risk score for at least one type of damage). The measure thus captures all types of
hazards, and provides a transparent, interpretable metric for stakeholders, including
insurers, lenders, and urban planners, to assess and compare physical risk exposure
across properties. The risk score also takes into account the floor number of apart-
ments, since the distance above ground can impact the risk, especially for damages
related to floods.

2.2 Pluvial Flood Index for Buildings (PFIb)

The Pluvial Flood Index for buildings (PFIb) represents another approach of data-
centric risk modeling in the domain of urban flood exposure (Zolghadr-Asli et al.,
2024). Developed and deployed through the InzureFlood pilot project, PFIb har-
nesses the growing availability and resolution of geospatial and insurance data to
provide a continuous, building-specific risk estimate (Svellingen and Torgersen, 2024)
This approach differs from traditional hydrological models by using machine learn-
ing, particularly the random forest algorithm, to empirically discover relationships
between diverse predictors and observed water damage outcomes. The PFIb workflow
begins with the systematic assembly of a comprehensive dataset for each building,
which can include more than 250 quantifiable parameters: topographic elevation,
slope, aspect, local roughness, distance to watercourses, surrounding land use and
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infiltration potential, catchment characteristics, and building-specific information
such as construction year or footprint (Svellingen and Torgersen, 2024) This richness
in predictor variables enables the model to account for subtle but influential differ-
ences in flood susceptibility between buildings, even within the same neighborhood
or municipality. Key strengths of the random forest algorithm for PFIb include:

• Accommodation of many predictor variables: The model can incorporate not
only topography and land use, but also infrastructure, hydrological context,
and fine-grained building attributes, without risk of multicollinearity or di-
mensionality overload (Rodriguez-Galiano et al., 2012; Elith et al., 2008).

• Variable importance analysis: The random forest provides direct, interpretable
metrics of which factors are most influential for flood risk, offering insight
for both researchers and practitioners as to which interventions may be most
effective (Svellingen and Torgersen, 2024; Rodriguez-Galiano et al., 2012).

• Resilience to overfitting and robustness across spatial domains: Because each
tree in the ensemble is trained on a random subset of data and predictors, the
model is less likely to overfit to local idiosyncrasies, making it reliable for broad
national applications as well as detailed urban studies (Elith, Leathwick, and
Hastie 2008; Rodriguez-Galiano et al. 2012).

The PFIb model is trained on national insurance claims data, which has been sys-
tematically standardized and includes both flooded and non-flooded buildings. The
result is a binary classification framework that, once trained, can assign a continuous
risk score (0–1) for any structure (Svellingen and Torgersen, 2024).

Notably, the data-centric approach allows the model to be retrained or incremen-
tally updated as new claims, improved DEMs, or revised land-use datasets become
available, ensuring continued relevance in the context of rapid urban growth or shift-
ing climate regimes (Zolghadr-Asli et al., 2024).

In its current operational form, PFIb reflects the risk of flooding under historical
conditions, but the architecture is inherently extensible: scenario-based precipitation,
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future land-use plans, or climate change projections can be incorporated for forward-
looking risk assessment (Di Baldassarre and Uhlenbrook, 2012).

The methodology is also transferable to other regions, provided there is access to
equivalent datasets for training and validation. By making flood risk quantifiable at
the level of individual buildings, PFIb supports targeted mitigation, insurance pric-
ing, and evidence-based policy decisions, helping cities and property owners adapt
to intensifying rainfall extremes (Svellingen and Torgersen, 2024).

2.3 Avalanche Indication for Buildings (AIb)

Avalanche and landslide hazard mapping in Norway is guided by detailed technical
protocols established by the Norwegian Water Resources and Energy Directorate
(NVE), which set forth procedures for systematically identifying both release areas
and runout zones for the main classes of avalanche and landslide processes (NVE,
2020).

Traditionally, implementation of these protocols involved a mixture of expert
interpretation, semi-automated GIS overlays, and field validation. While effective
in localized or high-stakes contexts, this approach posed limitations for national-
scale mapping: manual processes were not scalable, updating was cumbersome, and
reproducibility could be compromised by subjectivity or inconsistency (NVE, 2020;
Zolghadr-Asli et al., 2024) To overcome these barriers, the Avalanche Indication for
Buildings (AIb) is developed as a fully automated, data-centric workflow that embeds
NVE’s protocols in a modular and reproducible spatial analysis pipeline. The AIb
approach leverages harmonized, high-resolution DEMs, soil and landform data, and
forest/vegetation cover to systematically operationalize each step in hazard mapping,
eliminating reliance on field survey or subjective expert judgment for initial zoning
(Woodrow et al., 2016; Callow et al., 2007)

In short, the AIb is generated through a fully automated process consisting of
the following steps; Acquisition (1), Preparation (2), Enrichment (3), Processing (4)
and Validation (5).

1. Acquisition: National repositories supply DEMs, land use, soil maps, and
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surface roughness, continuously updated for relevance and accuracy (Zolghadr-Asli
et al., 2024)

2. Preparation: Data is harmonized in terms of projection and resolution, with
careful artifact correction and exclusion of built infrastructure so that only natural
terrain is assessed (Woodrow et al., 2016)

3. Enrichment: Derived spatial layers (e.g., slope, aspect, geomorphons, forest
type and density) are generated to serve as input for hazard logic. For example,
concave landforms are identified for their potential to concentrate flood avalanches,
while slope and roughness combinations are used for rockfall and snow avalanche
zoning (Callow et al., 2007).

4. Processing: NVE thresholds for each process are algorithmically implemented—for
instance, snow avalanches are mapped on slopes of 25–45°, rockfall sources above 45°,
and soil/flood slides in areas with susceptible soils and slopes above 15–20°. Each
identified release area triggers an automated runout simulation, using appropriate
mass-flow or trajectory modeling, producing a continuous probability surface for
runout impact (NVE, 2020).

5. Validation: Outputs are benchmarked against historical inventories and events,
and quality is monitored through automated statistical checks and, where feasible,
expert review (Troin et al., 2021).

A distinguishing feature of AIb is that, for every building, exposure is calculated
for all four main avalanche/landslide types, snow avalanche, rockfall, soil slide, and
flood avalanche. The final AIb value is conservatively set as the maximum risk from
these four processes, ensuring that the most hazardous scenario governs the building’s
risk indication (NVE, 2020). This strategy recognizes the potentially compounding
and site-specific nature of avalanche risk in complex terrain and supports both con-
servative planning and transparent communication to stakeholders. The shift from
manual, binary hazard zones to fully probabilistic, high-resolution building indicators
marks a significant advance. AIb supports dynamic updating, objective benchmark-
ing, and efficient nationwide scaling, features essential for proactive land use plan-
ning, insurance, and disaster risk reduction under evolving environmental conditions
(NVE, 2020; Zolghadr-Asli et al., 2024).
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3 Methodology
A hedonic house-price framework is augmented with three climate-risk measures, the
model-based Physical Risk Score (PRS) and two building-level indices for pluvial
flooding (PFIb) and avalanches (AIb). Identification relies on dwelling controls and
fixed effects (e.g area of dwelling; number of bedrooms) with indices scaled to [0,1]
and coefficients interpreted as percentage effects. Dynamic responses are probed via
event-study and differences-in-differences designs around severe weather incidents,
followed by checks to alternative specifications and sample restrictions.

3.1 Conceptual framework

The price of a house may be modeled by a standard hedonic house price function
such as in Rosen (1974). House prices, P , will then be a function of its different
internal and external amenities Z,

P = P (Z)

where Z includes structural, neighborhood and environmental characteristics.
Beltrán et al. (2019) also adds flood risk to the hedonic house price model;

P = P (Z, r, p(i, r))

where r is the risk for damage and p(i, r) is the subjective assessed probability of
damage for a household, where i is household information. Hence, the both subjective
and objective risk may impact the price.

We consider this to be a model for how risk for all climate related damages may
impact house prices.

Households will maximize their expected utility

EU = p(i, r) · UF [Z, r, Q] + (1 − p(i, r)) · UNF [Z, r, Q]

where UF (UNF ) is utility with the possibility of a natural disaster (or not), and Q
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is level of consumption. Maximized subject to the budget constraint

M = P (Z, r, p(i, r)) + Q + L(r) + I(π(r), C) − C

where L(r) = 0 if there is no disaster, or L(r) = S̄ is the loss function where S̄

is the cost of structural replacement in the case of a disaster. I(π(r), C) insurance
premium where π(r) is the objective probability of disaster and C is insurance cover.

Maximizing utility yields

∂P

∂p
< 0

∂P

∂i
< 0

∂P

∂r
< 0

Hence, both objective and subjective probability of risk will have a negative impact
on house prices

3.2 Estimating a hedonic model

We estimate a hedonic model which includes different housing attributes as explana-
tory variables, in addition to the risk measures presented in the previous section.
The dependent variable is the logarithm of the sell price, including common debt for
the units that also have that:

ln Pi,t = β0 + β1riski + β2sizei + β3roomsi + β4agei

+
J∑

j=1
θjCityj,i +

K∑

k=1
γkAreak,i +

M∑

m=1
ξmMonthm,i + εi (1)

Hence, β̂1 will be the estimate of the effect of risk on the price when controlling
for the other regressors. sizei is the size of dwelling i, roomsi the number of bed-
rooms and agei the age of the dwelling in 2024. Cityj,i includes dummy variables
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for four of the cities included in the dataset, and Areak,i dummy variables each of
the 1440 areas. This enables us to control for area-fixed effects, by using one area
or city as reference category. The ’grunnkrets’ areas are constructed in order consist
of a “geographically contiguous area”, and also be similar with respect to conditions
related to nature and economy, communication and building types and composition
(SSB, 2025). Controlling for these area fixed effect should thus enable the estimates
of our risk measures on prices to reflect the effect of the risk of a particular home,
since we control for the general risk in the area, as well other fixed effects over the pe-
riod such as socioeconomic conditions, distance to city center, public transportation,
school quality, access to kindergartens, etc.

It is important to ensure that the risk indicators do not contain the same housing
characteristics used as control variables in the hedonic model, to avoid endogeneity.
Only one indicator, the Physical Risk Score (PRS), includes a unit-specific charac-
teristic, namely the property’s floor level which may be relevant for apartments. To
prevent this variable from directly influencing both the risk index and the housing
price, we have consistently excluded floor level as an independent variable in the
regression models where the PRS index is included. The other risk indicators are
based solely on geographical and natural conditions, and are therefore independent
of the individual housing characteristics included in our models.

Finally, Monthm,i includes month dummies for each month in the data set in
order to control for time fixed effects such as the interest rate level, seasonal effects
and other national economic conditions, and εi is an error term. A dwelling may
have been sold multiple times in the data set, but we only have information about
the lot number and not the building or apartment number for each dwelling such
that we are unable to control for this for all units.

3.3 Salience effects from events

There have been certain notable events that have influenced many homes and/or
caused large damages to houses. These have also gathered media attention and are
thus known by the public. We include some of these events in the model by adding
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dummy variables equal to one after the event took place, and interact them with the
risk variable to investigate wether the event may impact homes with different risk
profiles differently. Hence, we estimate the model

ln Pi,t = β0 + β1riski + β2PostEventi + β3PostEventi × riski

+ β4sizei + β5roomsi + β6agei

+
J∑

j=1
θjCityj,i +

K∑

k=1
γkAreak,i +

M∑

m=1
ξmMonthm,i + εi (2)

From (2), we thus have that if β3 is negative and significant, and β1 is negative
and significant, risk for damages has a higher negative impact on house prices after
the event. β2 measures whether the event effect may be influenced the entire pop-
ulation and not just those with high risk, or controlling for other events that may
have occurred simultaneously such as e.g. changes housing market policy or other
economic conditions. Such a finding may suggest that public awareness through large
disasters adds to the subjective risk perception. We also use different event dummies
with varying duration, in order to measure potential myopic behavior. We estimate

ln Pi,t = β0 + β1riski

+ β2PostEvent3Mi × riski + β3PostEvent36Mi × riski

+ β4PostEvent612Mi × riski + β5PostEvent12Mi × riski

+ β6sizei + β7roomsi + β8agei

+
J∑

j=1
θjCityj,i +

K∑

k=1
γkAreak,i +

M∑

m=1
ξmMonthm,i + εi (3)

where PostEvent3Mi is a dummy variable equal to one the first three months af-
ter the event, PostEvent36Mi from three to six months after the event, PostEvent612Mi

from six months to a year and PostEvent12Mi a year after and more. We use these
dummies in separate estimated models, to investigate dynamic effects of risk on house
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prices. The estimated β2 through β5 in (3) thus measures whether and how the event
may influence risk perception at different horizons after an event. If the event is im-
portant for risk assessment only shortly after the event, β2 should be significantly
negative, and β3 through β5 should not be significant, etc.

Ideally, an analysis of the effects of these events would be conducted using a
“Differences-in-Differences” (DiD) approach. However, such a method requires pre-
cise data on which specific properties that were damaged after an event and which
were not, in order to have both a treatment group and a control group. We do not
have information on damages for all of the homes in the data set, rendering it impos-
sible to perform such an analysis. Given these data limitations, our use of interaction
terms represents an alternative method for examining changes in the pricing of risk
before and after the events. This approach captures the market’s general response to
risk changes, even without identifying individual damaged properties. There is a risk
that the event may coincide with other changes that may have influenced the risk
assessment, but the events should be considered the most probable cause. Future
research, with access to damage data, could further elaborate on these findings and
move closer to identifying causal effects.

4 Data and summary statistics
Transaction records (2019–2024) for five Norwegian cities are linked at address level
to PFIb and AIb and at the dwelling level to PRS, alongside standard structural
attributes (size, age, bedrooms, dwelling type). We thus combine building-level risk
geo-spatially with each sale.

4.1 Data sources and overview

As outlined in Section 2, we have three different indices of risk or damage for natural
hazards. The pysical risk score (PRS) is at the dwelling level, while the pluvial flood
index (PFIb) and the avalanche indicator (AIb) is at the building level.

We also have transaction data for the Norwegian housing market from Eien-
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domsverdi AS. These data cover the five Norwegian cities Oslo, Fredrikstad, Sta-
vanger, Bergen and Tromsø from 2019 to 2024. This consists of 195 214 transactions
(sales) of apartments, detached houses, townhouses and duplexes. The sell price of
each transaction is included as variables, in addition to the sell date, the size and lot
size of the dwelling, number of bedrooms, floor number, and its age. The physical
risk score is included directly in this data set. It also includes the specific address
of each sold unit, such that we can connect it to the pluvial flood index and the
avalanche indicator.

4.2 Summary statistics

House prices has in general increased over the sample, with seasonal patterns and
some different patterns across cities, as shown in Figure 1. House price growth has
also in general dampened after the high-inflationary period starting in 2022 in most
cities, while there has also been some decline in the average square meter price for
homes sold in some cities after 2022.
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Figure 1: Monthly average square meter price, by city

From Figure 2, we see that the risk distribution among properties is very differ-
ent for the three indices. While the pluvial flood risk is centered around 0.5 and
approximates a normal distribution, the joint risk measure and the avalanche risk is
more skewed to the right indicating that most homes has a low risk. The latter also
has an accumulation of properties with a risk equal to the highest value one. We
also see that the joint risk measure may reflect a combination of the pluvial flood
and the avalanche risk indices, since the joint measure both shows skewness to the
right and a local maximum around 0.5. Hence, while the joint measure indicates
any sort of risk for a weather related disaster, this is further decomposed in the risk
measures for pluvial floods and avalanches, even though different methods are used
to construct these risks.
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Figure 2: Histograms showing the distribution of risk among the properties sold in
the data set for the different risk measures.

There are also large differences between cities for the risk indices, as seen in
Tables 1, 2 and 3. PRS is higher in Bergen and Tromsø on average, while is it
lowest in Oslo. The pluvial flood index is highest in Tromsø, and the avalanche
index is highest on average in Bergen. Hence, PRS seems to be impacted mostly by
pluvial floods in Tromsø and avalanches in Bergen. The pluvial flood index is quite
similar on average for all cities except Tromsø, varying between 0.461 and 0.489, but
the standard deviation is somewhat higher in Fredrikstad and Stavanger. For the
avalanche index, there is larger variation between the cities. Stavanger, Fredrikstad,
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Oslo and Tromsø have quite low average indices, while Bergen is significantly higher.
The standard deviation is also much higher in Bergen, suggesting that some buildings
in the data set has a very large index in Bergen. This is also supported by the median
value in Bergen being quite low, even if it is higher than the other cities.

Table 1: Summary Statistics of PRS for Different Regions

Region Min 1st Qu. Median Mean 3rd Qu. Max s.d.
Overall 0.0000 0.0000 0.1667 0.2195 0.3333 1.0000 0.246
Oslo 0.0000 0.0000 0.1667 0.1949 0.3333 1.0000 0.234
Stavanger 0.0000 0.0000 0.1667 0.2288 0.3333 1.0000 0.255
Fredrikstad 0.0000 0.0000 0.1667 0.2029 0.3333 1.0000 0.250
Bergen 0.0000 0.0000 0.3333 0.2778 0.3333 1.0000 0.257
Tromsø 0.0000 0.0000 0.3333 0.2846 0.5000 1.0000 0.268

Table 2: Summary Statistics of PFIb for Different Regions

Region Min 1st Qu. Median Mean 3rd Qu. Max s.d.
Overall 0.000 0.401 0.472 0.474 0.545 0.940 0.110
Oslo 0.000 0.404 0.470 0.469 0.537 0.900 0.100
Stavanger 0.060 0.410 0.490 0.486 0.570 0.940 0.124
Fredrikstad 0.030 0.400 0.490 0.489 0.580 0.880 0.129
Bergen 0.000 0.3900 0.4600 0.4611 0.5300 0.9100 0.118
Tromsø 0.100 0.4800 0.5533 0.5541 0.6400 0.9200 0.119

Table 3: Summary Statistics of AIb for Different Regions

Region Min 1st Qu. Median Mean 3rd Qu. Max s.d.
Overall 0.000 0.000 0.000 0.073 0.004 1.000 0.195
Oslo 0.000 0.000 0.000 0.048 0.000 1.000 0.158
Stavanger 0.000 0.000 0.000 0.026 0.000 1.000 0.129
Fredrikstad 0.000 0.000 0.000 0.03835 0.000 1.000 0.139
Bergen 0.000 0.000 0.0320 0.1871 0.300 1.000 0.278
Tromsø 0.000 0.000 0.000 0.0559 0.000 1.0000 0.174
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Figure 3: Correlation between variables

We have several variables on house characteristics for each transaction in our
dataset. Some of these may be more related to the sell price of the home then
others, and we start investigating this by looking at correlations between variables.
As shown in Figure 3, the variables most highly correlated with the sell price is the
size of the dwelling, the number of bedrooms, and the square meter price (the latter
being generated from the price and the size). There is also some correlation between
the sell price and floor and age. However, there are no signs of a strong (linear)
relationship between the sell price and any of the risk indices. PRS, PFIb and AIb
have a correlation with the sell price of -0.05, -0.01 and -0.05, respectively. There is
also some correlation between PRS and PFIb and between PRS and AIb, in line with
PFIb and AIb measuring part of what is included in PRS. However, there are some
signs of a negative relationship between sell price and the pluvial flood risk index
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and the avalanche risk index, with correlations of -0.12 and -0.18, respectively. This
may suggest that newer buildings to a larger extent is build in areas where there is a
higher risk for pluvial floods and avalanches, or that risk reducing measures has been
taken for newer buildings. Even though there are only some weak patterns in the
correlations, there may still be nonlinear or partial relationships between variables
which we can analyze further.

We focus on events caused by water damages and avalanches, since we have the
most detailed data on this in our data set. Using data from Finance Norway, which
includes insurance claims related to these types of damages, we are able to assess
points in time when there were large events that may have impacted the households’
subjective risk perception.

In Figure 4, time series plots for insurance claims related to avalanches and wa-
ter damages (external factors causing water damages not including fluvial floods,
mainly pluvial floods) are shown. We see that certain months have a large number
of insurance claims. These are mainly related to large weather-related events causing
damages to many homes. For avalanches, we have two spikes: December 2020 with
nearly 2 000 claims and August 2023 with close to 1 000 claims. There was a massive
landslide in Gjerdrum municipality on the morning of December 30 2020, causing
massive damages and 10 fatalities. The spike in August 2023 is most likely related
to the extreme weather “Hans” affecting a large amount of the country (and other
neighboring countries) with large amounts of rainfall in areas where this normally
not has been common. There were a lot of claims related to pluvial floods in Au-
gust 20203, as seen in Figure 4, where there were around 7 500 insurance claims, in
addition to the claims related to avalanches. For pluvial floods there is also a spike
in September 2019, caused by extreme rainfall especially affecting Fredrikstad. The
spike in January 2024 for water damages is mainly related to extremely low temper-
atures causing frost damages in homes. Even if this is external factors causing water
damages, it is not related to pluvial floods and as such we will not investigate this
further.
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Figure 4: Insurance Claims

Public awareness is supported by data from Google Trends, shown in Figure 5.
The figures shows search activity for terms related to natural disasters and extreme
weather across the country; “extreme weather”, “quick clay” and “water damage”.
As seen in the figure, there is a lot of search activity around the times of certain
events related to extreme weather as mentioned above. Additionally, these spikes
are quite sharp, indicating that the common interest for these issues is not very
persistent after an event, suggesting myopic behavior. Search for water damages is a
bit more stable over the different months over time, but with spikes related to some
of the relevant events.
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Figure 5: Google Trends data

5 Results
Baseline hedonic estimates quantify price capitalization of each risk index on the full
sample, with economic magnitudes discussed alongside statistical precision. Het-
erogeneity is examined across cities and construction vintages to reveal how topog-
raphy, hazard mix, and building era mediate effects. Event-study and differences-
in-differences analyses around extreme-weather episodes test dynamics and validate
identification, and robustness checks compare model-based versus building-level in-
dices under alternative controls and fixed-effect structures.

5.1 Hedonic model

In this section, we will estimate hedonic models to evaluate the effect of the different
risk scores and indices on sell prices as outlined in section 3.1. In the following out-
puts, PRS denotes the physical risk score, PFIb the pluvial flood index for buildings,
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and AIb the avalanche indication for buildings. lSellPrice is the log of the sell price,
lArea the log of the area, Bedrooms the number of bedrooms, and lAge the log of
the age of the dwelling. Time FE implies time fixed effect at a monthly level by
adding month number dummies, Building type FE implies controlling for the type of
dwelling using dummy variables, City FE implies controlling for city fixed effects by
adding dummy variables for the cities, and Grunnkrets FE implies adding dummy
variables for each of the 1440 smaller areas in the data set. The constant term is
omitted from the output but included in the regression. We also include a dummy
variable for whether an apartment is above the ground floor when estimating the ef-
fect of the pluvial flood index. This can control for a potential lower risk for pluvial
flood damage when not at the ground level, and may also be relevant for assessing
the sell price in itself in the hedonic model due to consumer preferences.

We have carried out a stepwise regression for a hedonic model for all of the
three indices, starting with only the index (PRS, PFIb or AIb) and then adding
various dwelling specific characteristics and fixed effects to control for these. The
final model includes the index, as well as area of the dwelling, number of bedrooms,
age of the dwelling. It also controls for type of dwelling, time (month) fixed effects,
and grunnkrets (small region) fixed effects. The stepwise regressions for the three
indices are shown in Appendix A, and the final models are shown in Table 4.

As shown in Table 4 and in Appendix A, all of the indices has a significant negative
effect on the price when controlling for dwelling specific characteristics and including
different fixed effects. Furthermore, the effect of the area, number of bedrooms and
the age has a very similar effect in all models. Since all indices are scaled to be
between 0 and 1, we can interpret the estimated coefficients for the risk index as the
percentage decrease in the house price if the index increases from 0 to 1. For example,
for the physical risk damage, if the risk goes from 0 (no risk at all) to 1 (very high risk
for at least one disaster), the price is expected to decrease by 3.1%. Subsequently, an
increase in the risk from 0.4 to 0.7 (an increase of 0.3) would yield an expected price
decrease of around 1%. The estimated effect is highest for the pluvial flood index at
-0.056, and lowest for the avalanche indicator at -0.014. However, these indices are
not directly comparable as their distributions differ substantially.
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Table 4: Regression results. All three indices

Dependent variable:
lSellPrice

(1) (2) (3)
PRS −0.031∗∗∗

(0.002)

PFIb −0.056∗∗∗

(0.004)

AIb −0.014∗∗∗

(0.002)

lSize 0.628∗∗∗ 0.621∗∗∗ 0.621∗∗∗

(0.002) (0.002) (0.002)

Bedrooms 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.001) (0.001) (0.001)

lAge −0.090∗∗∗ −0.090∗∗∗ −0.090∗∗∗

(0.001) (0.001) (0.001)

UpperFloors 0.041∗∗∗

(0.001)

Building type FE Yes Yes Yes
Time FE Yes Yes Yes
City FE No No No
Grunnkrets FE Yes Yes Yes
Observations 185,875 176,588 176,588
R2 0.893 0.895 0.894
Adjusted R2 0.892 0.894 0.894

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For the different cities, we see from Table 5 that the physical risk score has a
negative significant effect on the sell price in Oslo, Fredrikstad, Bergen, and Tromsø,
while the effect is positive and significant in Stavanger. The magnitude of the nega-
tive effect is quite similar around -0.03, while the positive effect in Stavanger is 0.018.
The positive effect from the physical risk score on prices in Stavanger may be related
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to some particularly high priced areas due to e.g. popularity that also have a large
risk for some type of damages.

The pluvial flood index has a negative significant effect on prices in all cities
except Tromsø, where it is insignificant, as shown in Table 6. The effect is highest
in Fredrikstad and Stavanger at -0.078 and -0.072, while it is lower in Oslo (-0.052)
and Bergen (-0.044).

When estimating the effect of the avalanche indicator, we see in Table 7 that this
is only found to be significant for Bergen and Tromsø, showing a negative effect of
-0.020 and -0.042, respectively. The risk for avalanches are most prone in these two
cities, as shown by the larger indicator numbers in these two cities summarized in
Table 3.

Table 5: Regression results. Physical risk score, for each city.

Dependent variable:
lSellPrice

Oslo Fredrikstad Stavanger Bergen Tromso
PRS −0.028∗∗∗ −0.032∗∗∗ 0.018∗∗∗ −0.037∗∗∗ −0.034∗∗∗

(0.002) (0.010) (0.006) (0.004) (0.007)

lSize 0.665∗∗∗ 0.466∗∗∗ 0.580∗∗∗ 0.597∗∗∗ 0.503∗∗∗

(0.002) (0.008) (0.005) (0.004) (0.006)

Bedrooms 0.040∗∗∗ 0.050∗∗∗ 0.033∗∗∗ 0.027∗∗∗ 0.048∗∗∗

(0.001) (0.003) (0.002) (0.001) (0.002)

lAge −0.054∗∗∗ −0.149∗∗∗ −0.144∗∗∗ −0.128∗∗∗ −0.118∗∗∗

(0.001) (0.003) (0.002) (0.001) (0.002)

Building type FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Grunnkrets FE Yes Yes Yes Yes Yes
Observations 112,995 8,044 17,247 38,118 9,471
R2 0.912 0.765 0.847 0.842 0.869
Adjusted R2 0.911 0.757 0.844 0.840 0.866

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Regression results. Pluvial flood index, for each city.

Dependent variable:
lSellPrice

Oslo Fredrikstad Stavanger Bergen Tromso
PFIb −0.053∗∗∗ −0.078∗∗∗ −0.073∗∗∗ −0.050∗∗∗ −0.002

(0.005) (0.020) (0.012) (0.008) (0.014)

lSize 0.664∗∗∗ 0.462∗∗∗ 0.552∗∗∗ 0.573∗∗∗ 0.504∗∗∗

(0.002) (0.008) (0.005) (0.004) (0.007)

Bedrooms 0.039∗∗∗ 0.050∗∗∗ 0.037∗∗∗ 0.029∗∗∗ 0.044∗∗∗

(0.001) (0.003) (0.002) (0.001) (0.002)

lAge −0.056∗∗∗ −0.150∗∗∗ −0.144∗∗∗ −0.127∗∗∗ −0.115∗∗∗

(0.001) (0.003) (0.002) (0.001) (0.003)

UpperFloors 0.041∗∗∗ 0.038∗∗∗ 0.039∗∗∗ 0.044∗∗∗ 0.038∗∗∗

(0.001) (0.007) (0.004) (0.002) (0.004)

Building type FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Grunnkrets FE Yes Yes Yes Yes Yes
Observations 105,524 7,556 15,872 34,568 8,228
R2 0.914 0.764 0.853 0.846 0.871
Adjusted R2 0.913 0.756 0.851 0.844 0.868

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Regression results. Avalanche indicator, for each city.

Dependent variable:
lSellPrice

Oslo Fredrikstad Stavanger Bergen Tromso
AIb −0.003 −0.026 0.007 −0.020∗∗∗ −0.042∗∗∗

(0.003) (0.016) (0.012) (0.003) (0.010)

lSize 0.663∗∗∗ 0.459∗∗∗ 0.555∗∗∗ 0.579∗∗∗ 0.497∗∗∗

(0.002) (0.008) (0.005) (0.004) (0.006)

Bedrooms 0.040∗∗∗ 0.051∗∗∗ 0.036∗∗∗ 0.029∗∗∗ 0.046∗∗∗

(0.001) (0.003) (0.002) (0.001) (0.002)

lAge −0.056∗∗∗ −0.151∗∗∗ −0.145∗∗∗ −0.129∗∗∗ −0.117∗∗∗

(0.001) (0.003) (0.002) (0.001) (0.002)

Building type FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Grunnkrets FE Yes Yes Yes Yes Yes
Observations 108,494 7,856 15,986 35,530 8,722
R2 0.912 0.766 0.853 0.845 0.871
Adjusted R2 0.911 0.758 0.850 0.843 0.867

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

When separating on the year the building was built, we see that there is some
variation in how climate risk is relevant for the price. As shown for PRS in Table
8, the risk is insignificant at the 5% level for buildings built between 1990 and 1999,
while the effect is highest for buildings from the eighties and for buildings from the
sixties or older. Buildings from 2000 also have a smaller effect on price from PRS
than buildings from the eighties and older.

For pluvial floods, shown in Table 9, the main difference is between buildings
built before and after 1990, where prices for those built after 1990 are less impacted
by the pluvial flood index. The same pattern can be seen for the avalanche indicator
in Table 10, which is only significant for buildings built in 1969 or older.
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Table 8: Regression results. Physical risk score, for different year the building was
built.

Dependent variable:
lSellPrice

-1969 1970-1979 1980-1989 1990-1999 2000-
PRS −0.031∗∗∗ −0.025∗∗∗ −0.037∗∗∗ −0.014∗ −0.016∗∗∗

(0.002) (0.005) (0.006) (0.008) (0.003)

lSize 0.609∗∗∗ 0.440∗∗∗ 0.575∗∗∗ 0.670∗∗∗ 0.764∗∗∗

(0.002) (0.005) (0.006) (0.008) (0.003)

Bedrooms 0.038∗∗∗ 0.039∗∗∗ 0.040∗∗∗ 0.034∗∗∗ 0.031∗∗∗

(0.001) (0.002) (0.002) (0.003) (0.001)

lAge 0.055∗∗∗ −0.154∗∗∗ −0.097∗∗∗ −0.219∗∗∗ −0.090∗∗∗

(0.003) (0.031) (0.026) (0.023) (0.001)

Building type FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Grunnkrets FE Yes Yes Yes Yes Yes
Observations 94,611 20,935 16,661 8,756 44,912
R2 0.896 0.921 0.924 0.924 0.923
Adjusted R2 0.895 0.918 0.920 0.917 0.921

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Regression results. Pluvial flood index, for different year the building was
built.

Dependent variable:
lSellPrice

-1969 1970-1979 1980-1989 1990-1999 2000-
PFIb −0.058∗∗∗ −0.065∗∗∗ −0.059∗∗∗ −0.046∗∗∗ −0.048∗∗∗

(0.006) (0.012) (0.013) (0.017) (0.008)

lSize 0.604∗∗∗ 0.444∗∗∗ 0.582∗∗∗ 0.654∗∗∗ 0.749∗∗∗

(0.002) (0.005) (0.006) (0.008) (0.003)

Bedrooms 0.038∗∗∗ 0.038∗∗∗ 0.037∗∗∗ 0.034∗∗∗ 0.032∗∗∗

(0.001) (0.002) (0.002) (0.003) (0.001)

lAge 0.064∗∗∗ −0.176∗∗∗ −0.085∗∗∗ −0.224∗∗∗ −0.096∗∗∗

(0.003) (0.032) (0.026) (0.024) (0.002)

UpperFloors 0.044∗∗∗ 0.014∗∗∗ 0.028∗∗∗ 0.027∗∗∗ 0.066∗∗∗

(0.001) (0.003) (0.003) (0.004) (0.002)

Building type FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Grunnkrets FE Yes Yes Yes Yes Yes
Observations 88,092 19,888 15,550 8,177 40,041
R2 0.898 0.921 0.925 0.927 0.929
Adjusted R2 0.896 0.918 0.920 0.920 0.927

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: Regression results. Avalanche indicator, for different year the building was
built.

Dependent variable:
lSellPrice

-1969 1970-1979 1980-1989 1990-1999 2000-
AIb −0.024∗∗∗ −0.015∗ −0.009 0.004 −0.006∗

(0.004) (0.008) (0.008) (0.010) (0.003)

lSize 0.606∗∗∗ 0.440∗∗∗ 0.577∗∗∗ 0.657∗∗∗ 0.752∗∗∗

(0.002) (0.005) (0.006) (0.008) (0.003)

Bedrooms 0.037∗∗∗ 0.039∗∗∗ 0.040∗∗∗ 0.035∗∗∗ 0.033∗∗∗

(0.001) (0.002) (0.002) (0.003) (0.001)

lAge 0.057∗∗∗ −0.182∗∗∗ −0.091∗∗∗ −0.214∗∗∗ −0.097∗∗∗

(0.003) (0.031) (0.026) (0.024) (0.002)

Building type FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Grunnkrets FE Yes Yes Yes Yes Yes
Observations 90,885 20,647 16,264 8,250 40,542
R2 0.896 0.921 0.924 0.926 0.926
Adjusted R2 0.895 0.918 0.920 0.919 0.924

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

5.2 Event studies

As illustrated in Figure 4, there has been certain major events that may have im-
pacted public awareness and thus the subjective risk for pluvial floods and avalanches
both in the short and long run. We will investigate the effect of the extreme rainfall
in Fredrikstad in September 2019, the landslide in Gjerdrum in December 2020 and
the extreme weather event “Hans” in August 2023 as three major events that may
have impacted the risk assessment both locally and nationally.
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5.2.1 September 2019

Since the extreme rainfall was related to pluvial floods, we investigate the effect on
house prices of this event related to pluvial floods both in Fredrikstad and the other
cities. As shown by the results in Table 11, there does not seem to be a price effect
from risk assessment due to the extreme event. However, when controlling for the
potential interaction effect for different horizons, we observe that the coefficient on
the risk component varies. This may suggest that there is some dynamic effects
on how risk is perceived after an event, or some potential seasonal effects in risk
assessment.
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Table 11: Regression results. Pluvial flood index, Fredrikstad.

Dependent variable:
lSellPrice

(1) (2) (3) (4) (5)
PFIb −0.067 −0.076∗∗∗ −0.075∗∗∗ −0.088∗∗∗ −0.058∗

(0.050) (0.020) (0.020) (0.021) (0.033)

Sept2019R −0.013
(0.052)

Sept2019_3MR −0.037
(0.078)

Sept2019_36MR −0.095
(0.095)

Sept2019_612MR 0.102∗

(0.056)

Sept2019_12MR −0.028
(0.036)

lSize 0.462∗∗∗ 0.462∗∗∗ 0.462∗∗∗ 0.462∗∗∗ 0.462∗∗∗

(0.008) (0.008) (0.008) (0.008) (0.008)

Bedrooms 0.050∗∗∗ 0.050∗∗∗ 0.050∗∗∗ 0.050∗∗∗ 0.050∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)

lAge −0.150∗∗∗ −0.150∗∗∗ −0.150∗∗∗ −0.150∗∗∗ −0.150∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)

UpperFloors 0.038∗∗∗ 0.038∗∗∗ 0.038∗∗∗ 0.038∗∗∗ 0.038∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007)

Building type FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Grunnkrets FE Yes Yes Yes Yes Yes
Observations 7,556 7,556 7,556 7,556 7,556
R2 0.764 0.764 0.764 0.764 0.764
Adjusted R2 0.756 0.756 0.756 0.756 0.756

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.2.2 December 2020

The landslide in Gjerdrum in December 2020 may have had impacts on risk assess-
ment across the country as it became an event of national interest due to the fatal
outcomes. Since we do not have data on Gjerdrum municipality in this data set, we
investigate the effect on the Gjerdrum landslide on all of the cities in our data set
simultaneously. In Table 12, we see that the negative effect of the risk for avalanches
increases after the Gjerdrum event. The effect is largest in the three first months
after the event, and also one year after the event. This may indicate both myopic
behavior, and also some seasonality in how risk is perceived. We also see in Figure 5
that there is a small increase in search activity for quick clay about one year after the
landslide in Gjerdrum. The public awareness of that it had been one year since the
incident, through e.g. media attention, may have been a catalyst for the increased
awareness of avalanche risks in this period.
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Table 12: Regression results. Landslide December 2020

Dependent variable:
lSellPrice

(1) (2) (3) (4) (5)
AIb −0.006∗ −0.015∗∗∗ −0.016∗∗∗ −0.016∗∗∗ −0.011∗∗∗

(0.003) (0.002) (0.002) (0.002) (0.003)

Dec2020R −0.015∗∗∗

(0.004)

Dec2020_3MR −0.020∗∗

(0.009)

Dec2020_36MR 0.004
(0.008)

Dec2020_612MR −0.003
(0.007)

Dec2020_12MR −0.010∗∗∗

(0.004)

lSize 0.621∗∗∗ 0.621∗∗∗ 0.621∗∗∗ 0.621∗∗∗ 0.621∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Bedrooms 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

lAge −0.089∗∗∗ −0.089∗∗∗ −0.089∗∗∗ −0.089∗∗∗ −0.089∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

UpperFloors 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Building type FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Grunnkrets FE Yes Yes Yes Yes Yes
Observations 171,748 171,748 171,748 171,748 171,748
R2 0.895 0.895 0.895 0.895 0.895
Adjusted R2 0.894 0.894 0.894 0.894 0.894

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.2.3 August 2023

In August 2023, the extreme weather “Hans” caused damages both due to pluvial
floods, fluvial floods, avalanches, and other types of damages, and it impacted several
parts of the country. Hence, we investigate the effect of this event related to all of
our three risk indices and across the country.

As seen in Tables 13, 14 and 15, the effect of risk on house prices changes in
certain time intervals. For PRS, shown in Table 13, the interaction term for model
(1) is positive, indicating that the negative effect of risk is smaller after August 2023.
We also have a positive effect from the interaction term in model (5), being quite
similar in absolute value as the effect of the risk term, indicating that the physical
risk score is insignificant one year after Hans.

For the pluvial flood index, shown in Table 14, we also see significant effects for
the interaction terms in (1) and (5). However, these are negative, indicating that
the risk for pluvial floods has a larger negative effect on prices one year after Hans.

The avalanche index, shown in Table 15 only has a significant interaction effect
in (2). This is the interaction term for three months after the event, indicating
that myopic behavior related to risk assessment for avalanches after Hans since the
joint effect from avalanche risk on house prices is more than twice as large the three
months after Hans. This is in line with what we saw after the landslide at Gjerdrum
for the avalanche risk index.

This shows that there may be some differences in how risk is perceived dynami-
cally. The risk for pluvial floods seems to be affected by the season of the house sale,
while the risk for avalanches increases shortly after an event.
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Table 13: Regression results. Hans August 2023, PRS

Dependent variable:
lSellPrice

(1) (2) (3) (4) (5)
PRS −0.022∗∗∗ −0.019∗∗∗ −0.019∗∗∗ −0.020∗∗∗ −0.021∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Aug2023R 0.010∗∗∗

(0.003)

Aug2023_3MR 0.003
(0.007)

Aug2023_36MR −0.007
(0.008)

Aug2023_612MR 0.006
(0.005)

Aug2023_12MR 0.023∗∗∗

(0.006)

lSize 0.627∗∗∗ 0.627∗∗∗ 0.627∗∗∗ 0.627∗∗∗ 0.627∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Bedrooms 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

lAge −0.089∗∗∗ −0.089∗∗∗ −0.089∗∗∗ −0.089∗∗∗ −0.089∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

UpperFloors 0.040∗∗∗ 0.040∗∗∗ 0.040∗∗∗ 0.040∗∗∗ 0.040∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Building type FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Grunnkrets FE Yes Yes Yes Yes Yes
Observations 180,865 180,865 180,865 180,865 180,865
R2 0.894 0.894 0.894 0.894 0.894
Adjusted R2 0.893 0.893 0.893 0.893 0.893

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

36



Table 14: Regression results. Hans August 2023, PFIb.

Dependent variable:
lSellPrice

(1) (2) (3) (4) (5)
PFIb −0.052∗∗∗ −0.056∗∗∗ −0.056∗∗∗ −0.055∗∗∗ −0.054∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

Aug2023Rp −0.018∗∗

(0.007)

Aug2023_3MRp −0.008
(0.010)

Aug2023_36MRp 0.010
(0.011)

Aug2023_612MRp −0.011
(0.008)

Aug2023_12MRp −0.023∗∗

(0.010)

lSize 0.621∗∗∗ 0.621∗∗∗ 0.621∗∗∗ 0.621∗∗∗ 0.621∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Bedrooms 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

lAge −0.089∗∗∗ −0.089∗∗∗ −0.089∗∗∗ −0.089∗∗∗ −0.089∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

UpperFloors 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Building type FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Grunnkrets FE Yes Yes Yes Yes Yes
Observations 171,748 171,748 171,748 171,748 171,748
R2 0.895 0.895 0.895 0.895 0.895
Adjusted R2 0.895 0.895 0.895 0.895 0.895

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 15: Regression results. Hans August 2023, AIb.

Dependent variable:
lSellPrice

(1) (2) (3) (4) (5)
AIb −0.016∗∗∗ −0.015∗∗∗ −0.016∗∗∗ −0.016∗∗∗ −0.016∗∗∗

(0.003) (0.002) (0.002) (0.002) (0.002)

Aug2023Ra −0.0001
(0.004)

Aug2023_3MRa −0.022∗∗

(0.008)

Aug2023_36MRa 0.002
(0.011)

Aug2023_612MRa 0.005
(0.006)

Aug2023_12MRa 0.008
(0.007)

lSize 0.621∗∗∗ 0.621∗∗∗ 0.621∗∗∗ 0.621∗∗∗ 0.621∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Bedrooms 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

lAge −0.089∗∗∗ −0.089∗∗∗ −0.089∗∗∗ −0.089∗∗∗ −0.089∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

UpperFloors 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Building type FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Grunnkrets FE Yes Yes Yes Yes Yes
Observations 171,748 171,748 171,748 171,748 171,748
R2 0.895 0.895 0.895 0.895 0.895
Adjusted R2 0.894 0.894 0.894 0.894 0.894

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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6 Discussion
One of the most striking findings of our analysis is the statistically significant neg-
ative effect of climate risk on housing prices in the Norwegian market across most
cities and model specifications. Norway does not have a legally mandated disclosure
requirement for natural hazard risk in property listings, thus making it less obvious
that buyers in general should be aware of this and react to it in the housing market.
One might, therefore, have expected a limited effect of risk on house prices, as not
all buyers possess the same information. Only buyers that have actively searched for
information about risk for disasters will possess this information. Our results, how-
ever, indicate that risk is still relevant for the price of a home. A possible explanation
is that information on flood and landslide risk is publicly available through mapping
services from entities like the Norwegian Water Resources and Energy Directorate
(NVE), and that a growing share of homebuyers actively seek out and utilize such
information. This underpins the robustness of our findings and points to a tangible
market effect of climate risk, even in the absence of formal information requirements.

Our study finds that climate-related natural hazards exert a statistically signifi-
cant negative impact on house prices in Norwegian cities. All three risk indicators;
PRS (3,1 %), PFIb (5,6 %), and AIb (1,4 %), are negatively associated with property
values, even when controlling for structural attributes and locational fixed effects.
This suggests that buyers and market actors factor climate risk into pricing. Hence,
there is a degree of market efficiency wherein buyers incorporate information on risk
for weather-related damages into their asset valuation, which underlines the economic
salience of hazard exposure.

However, other factors may also be important for taking risk into account. The
observed price discounts may not fully account for all potential direct and indirect
costs, particularly if homebuyers exhibit cognitive biases or operate with incomplete
information. Related literature suggests that capitalization effects are significantly
stronger in markets with mandatory risk disclosure policies (Hennighausen and Suter,
2020; Eren et al., 2022), which is not mandatory in Norway.

These results are not in line with standard economic theory, but they represent

39



information for financial regulators. Climate risk is considered a material threat
to financial stability, see e.g. Nieto (2019), yet studies have often lacked granular,
market-based data on how this risk translates into tangible asset values (Aurouet
et al., 2023).

One of the most important transmission channels of physical risk to the banking
sector is through the housing market, which serves as the primary collateral for bank
lending in Norway. A decline in house prices due to climate risk directly affects the
Loss Given Default (LGD) on mortgages, increasing potential losses for lenders. This
study gives an empirical estimate of the physical risk premium in the housing market,
offering a quantitative input that can be used by financial institutions to refine
their internal credit risk models, as encouraged by regulators, and by supervisory
authorities to conduct more accurate climate stress tests of the banking system.

The results demonstrate that the type of climate risk priced into the housing
market varies significantly by city, a finding directly attributable to local topography
and geography. The price discount associated with Alb is statistically significant only
in Bergen (-2.0%) and Tromsø (-4.2%), cities associated with steep mountainous
terrain immediately surrounding urban settlements. Conversely, the price impact
of PFIb is most pronounced in the relatively flatter, low-lying cities of Fredrikstad
(-7.8%) and Stavanger (-7.2%), which are situated on major river estuaries or coastal
plains where surface water accumulation is a more dominant threat. These variations
underscore the importance of local context in climate risk valuation, indicating that
the market is not pricing an abstract, uniform concept of “climate risk” but is instead
responding rationally to the specific, dominant, and observable local hazards.

The event study analysis indicates that the price impact of climate risk is not
static but dynamic, shifting in response to salient natural disasters. Most notably,
the negative effect of the Alb intensified significantly nationwide in the three months
immediately following the highly publicized Gjerdrum quick clay landslide of Decem-
ber 2020 (additional price discount of 2.0% for properties with higher avalanche risk
during this period, on top of the baseline effect).

This dynamic response can be explained through the lens of behavioral economics,
specifically the “availability heuristic”, a cognitive bias where individuals overweight
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the probability of events that are recent, vivid, and easily recalled from memory
(Brown et al., 2018). The Gjerdrum landslide, with its extensive and dramatic media
coverage and tragic loss of life, dramatically increased the salience of landslide risk
in the public consciousness, as evidenced by spikes in related online search activity
(Le, 2024; Hennighausen and Suter, 2020). This heightened, albeit temporary, risk
perception translated into a greater willingness-to-pay to avoid such risks, thereby
increasing the price discount in the housing market where this risk is larger.

The results also suggest a degree of myopic behavior, as the intensified effect
diminishes in the 3-to-12-month period post-event before re-emerging significantly
one year later. This pattern of dissipation is a common finding in studies of post-
disaster housing markets, as the memory of the event fades from public attention.
The re-emergence of the effect after one year could be linked to seasonal reminders,
such as the anniversary of the event or the onset of winter conditions associated
with higher landslide and avalanche frequency, which may re-trigger the availability
heuristic. This finding implies that household risk perception is not solely based
on objective, long-term probabilities, but is heavily influenced by the flow of recent,
emotionally charged information (Kousky et al., 2020).

A major contribution of this study is the comparative evaluation of risk measures
with different levels of spatial and methodological detail. The PRS measure, derived
from zonal overlays, exhibits less robust price associations than building-level indices
based on machine learning and high-resolution terrain data, even though it is at the
apartment level. This may suggest that buyers and market actors respond more
strongly to localized risk attributes, also when these are not explicitly disclosed in
public registries. This underscores the value of using data-centric, high-resolution
risk assessment methodologies, a transition advocated for in the wider climate risk
literature.

A perhaps counterintuitive finding of this study is that older buildings appear to
be associated with lower capitalized climate risk when looking at correlations (see
Figure 3). However, the negative price effects of both PFIb and Alb were stronger for
buildings constructed before 1970 (see Tables 9 and 10), while the effects were weaker
or insignificant for more modern constructions. This runs contrary to the common
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expectation that newer buildings, constructed under more modern and ostensibly
stricter regulations, should be safer.

Table 8 implies that risk exposure measured by PRS is not strongly penalized
for older homes, possibly because they tend to be in safer areas. The price effects
from flood risk are larger for older homes when risk exists, even though older homes
on average has lower risk. Table 10 indicates that avalanche risk is historically
concentrated in older urban zones. Current developments may also lead to these
areas being more prone to avalanches. This may be a result of structures in highly
exposed zones being destroyed or removed over time, leaving only those located in
relatively safe areas. Recent decades have also seen urbanization through housing
development in previously undeveloped, and often hazard-prone, locations, since
low-risk land becomes scarce. Older urban cores may also benefit from established
natural drainage infrastructure, whereas newer suburban developments may have
less robust systems.

This interplay complicates assumptions underlying current building regulations
and suggests that hazard-aware land-use planning may be more critical than incre-
mental improvements in building codes. It also raises equity considerations since
homeowners of newer dwellings may bear disproportionate climate risk relative to
those in older neighborhoods. It may also indicate that buyers are more concerned
about risk if they are buying an older home than a newer home.

A potential extension of our analysis would be to investigate whether the effect
of climate risk varies across different price segments of the housing market. It is
conceivable that buyers of more expensive properties have different preferences for, or
awareness of, risk compared to buyers in lower price segments and vice versa. Such an
analysis is challenging, partly because both the price and the price per square meter
varies systematically between apartments and single-family homes, as well as between
areas. However, our current model controls for such price effects to a considerable
degree through the inclusion of fixed effects for basic statistical units (grunnkretser),
which captures local price levels and neighborhood characteristics that are stable
over time. Nevertheless, we acknowledge that a segmented analysis could provide
further insight, and this remains an interesting avenue for future research.
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This study, while comprehensive, is subject to several limitations that open av-
enues for future inquiry. First, our analysis is confined to two specific hazards: pluvial
floods and avalanches, in addition to the index incorporating all types of damages.
A more complete picture would require isolating other significant hazards such as
coastal storm surges, and quick clay slides. Second, the potential for omitted vari-
able bias remains an inherent challenge in all hedonic models since other factors may
also be important and also related to risk indices. Third, our risk indices are based
on historical data; they do not explicitly incorporate forward-looking climate change
projections, which forecast an intensification of precipitation and other risk factors.
Finally, our dataset is restricted to including only sold used homes from the period
of the sample. This may introduce some selection bias. Building on these findings
and shortcomings, we should focus on expanding this analysis for future research.

7 Conclusion
Our study reveals an interaction between climate-related natural hazards and house
prices in Norwegian cities, demonstrating the influence different risk indicators mea-
suring different types of damages on property values. These findings confirm that
buyers and market actors actively integrate climate risk into their valuation pro-
cesses, reflecting a level of market efficiency. However, the observed price discounts
from risk might not encapsulate all possible costs associated with such risks, espe-
cially considering incomplete information processing by homebuyers.

Variations across cities highlight the importance of regional aspects in shaping
climate risk assessment, with specific hazards being more or less relevant in different
urban environments. Moreover, our analysis shows that these impacts are dynamic,
often influenced by recent and salient natural disasters. This points to behavioral
economic principles such as myopia and amnesia.

Interestingly, our data suggests that older buildings exhibit lower capitalized
climate risk compared to newer constructions, complicating common assumptions
about building safety standards. This could point to a broader pattern of urban
expansion into more hazard-prone areas, raising important questions about land-use
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planning and equitable risk distribution among homeowners, or different behavior
among buyers of old vs new buildings.

Overall, this study illuminates the implications of climate risks on property valu-
ations, offering valuable empirical estimates to refine credit risk models and enhance
climate stress testing within the banking sector. As awareness and salience of such
risks grow, and perhaps also the risk itself grows for many buildings due to more
extreme weather, stakeholders should continue to integrate these considerations to
promote financial stability, and to support sustainable urban development.
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A Hedonic regressions

Table 16: Regression results. Physical risk score

Dependent variable:
lSellPrice

(1) (2) (3) (4) (5)
PRS −0.111∗∗∗ −0.102∗∗∗ −0.100∗∗∗ 0.026∗∗∗ −0.031∗∗∗

(0.004) (0.003) (0.003) (0.002) (0.002)

lArea 0.571∗∗∗ 0.554∗∗∗ 0.602∗∗∗ 0.628∗∗∗

(0.003) (0.003) (0.002) (0.002)

Bedrooms 0.048∗∗∗ 0.054∗∗∗ 0.034∗∗∗ 0.037∗∗∗

(0.001) (0.001) (0.001) (0.001)

lAge −0.022∗∗∗ −0.017∗∗∗ −0.053∗∗∗ −0.090∗∗∗

(0.001) (0.001) (0.001) (0.001)

Building type FE No Yes Yes Yes Yes
Time FE No Yes Yes Yes Yes
City FE No No No Yes No
Grunnkrets FE No No No No Yes
Observations 195,101 185,875 185,875 185,875 185,875
R2 0.004 0.347 0.379 0.685 0.893
Adjusted R2 0.004 0.347 0.379 0.685 0.892

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 17: Regression results. Pluvial flood index.

Dependent variable:
lSellPrice

(1) (2) (3) (4) (5)
PFIb −0.112∗∗∗ −0.133∗∗∗ −0.131∗∗∗ 0.026∗∗∗ −0.056∗∗∗

(0.010) (0.008) (0.008) (0.006) (0.004)

lSize 0.575∗∗∗ 0.557∗∗∗ 0.602∗∗∗ 0.621∗∗∗

(0.004) (0.004) (0.003) (0.002)

Bedrooms 0.047∗∗∗ 0.052∗∗∗ 0.032∗∗∗ 0.037∗∗∗

(0.001) (0.001) (0.001) (0.001)

lAge −0.021∗∗∗ −0.018∗∗∗ −0.048∗∗∗ −0.089∗∗∗

(0.001) (0.001) (0.001) (0.001)

UpperFloors 0.124∗∗∗ 0.124∗∗∗ 0.059∗∗∗ 0.041∗∗∗

(0.002) (0.002) (0.002) (0.001)

Building type FE No Yes Yes Yes Yes
Time FE No Yes Yes Yes Yes
City FE No No No Yes No
Grunnkrets FE No No No No Yes
Observations 185,308 171,748 171,748 171,748 171,748
R2 0.001 0.352 0.383 0.686 0.895
Adjusted R2 0.001 0.352 0.383 0.686 0.895

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 18: Regression results. Avalanche indicator.

Dependent variable:
lSellPrice

(1) (2) (3) (4) (5)
AIb −0.173∗∗∗ −0.234∗∗∗ −0.234∗∗∗ −0.032∗∗∗ −0.014∗∗∗

(0.005) (0.005) (0.004) (0.003) (0.002)

lArea 0.572∗∗∗ 0.554∗∗∗ 0.598∗∗∗ 0.621∗∗∗

(0.004) (0.003) (0.002) (0.002)

Bedrooms 0.048∗∗∗ 0.053∗∗∗ 0.034∗∗∗ 0.037∗∗∗

(0.001) (0.001) (0.001) (0.001)

lAge −0.028∗∗∗ −0.024∗∗∗ −0.050∗∗∗ −0.090∗∗∗

(0.001) (0.001) (0.001) (0.001)

Building type FE No Yes Yes Yes Yes
Time FE No Yes Yes Yes Yes
City FE No No No Yes No
Grunnkrets FE No No No No Yes
Observations 185,308 176,588 176,588 176,588 176,588
R2 0.005 0.350 0.381 0.684 0.894
Adjusted R2 0.005 0.350 0.381 0.684 0.894

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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